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The optimal rate of flow of matter to a growing elastic body, ensuring minimum stresses 
or displacements at the moment the growth process ends, is found for an external load vary- 
ing arbitrarily in time. The problem is solved in the quasistatic formulation for small de- 
formations. 

i. Formulation of the Problem of Optimization of the Process of Growth of a Column. 
We shall study the process of continuous growth of a column of linearly elastic material. 
Prior to deformation the column consists of a cylinder with length ~ and a circular trans- 
verse cross section with radius a 0. The bottom end of the column is fastened rigidly, while 
the upper end is free. At the time t = 0 material starts to accrete on the lateral surface 
of the column, and equipment is placed on the top end. Because of the inflow of matter from 
outside the radius of the cylinder varies according to the law a = a (t). The radius of the 
growing cylinder equals a: l at the moment growth stops t = T. The function a(t) does not de- 
crease monotonically. We shall denote by V(t) = 2~la(t)$it) the rate of growth of the cylinder 
(a" = da/dt). The function V(t) is bounded: 0 ~ V I ~ V(t) ~ V 2 < ~ (V I and V 2 are the mini- 
mum and maximum rates of inflow of matter). Growth occurs freely. 

The effect of the equipment on the column reduces to a compressive force P = P(t), 
applied to the end of the cylinder and equal to the weight of the equipment. We assume that 
P(O) = 0, P(T) = P0 e 0. The quantity P(t) is not a monotonic function of time, since addi- 
tional instruments and devices, necessary for setting and adjusting the equipment, could be 
placed during the growth process on the top of the column and then subsequently removed. 
The maximum achievable rate of lifting or removal of the equipment is fixed: IP'(t) I ~ U I. 

The external load creates a longitudinal strain of the column. We introduce the cylin- 
drical coordinate system (r, ~, z), whose z axis is aligned with the longitudinal axis of 
the column. In a uniaxial stressed state the strain g is related with the stress o by the 
equality [I] 

a(t, r) = E[e(t) - -  e(~*(r))], ( 1 . 1 )  

where E is the constant modulus of elasticity and ~* is the moment at which the column 
material nucleates. For the starting cylinder (0 ~ r ~ a 0) we assume that ~* = 0, and in 
the accreted region (0~r~a I ) the function t = x*(r) is the inverse of r =a(t). 

The expression (i.i) satisfies the equations of equilibrium and the boundary conditions 
on the lateral surface of the cylinder. We write down the boundary conditions at the ends 

a(t) 

of the column: 2~ ~ a(t, r)rdr = --P(t). We substitute (i.i) into this equality. We represent 
0 

the integral over r as a sum of two integrals from 0 to a 0 and from a 0 to a (t). We calcu- 
late the first integral explicitly, and in the second integral we change the variable of 
integration to r = a (s). The result is 

t 

a~e (t) + 2 y [e (t) - -  e (s)] a (s) a" (s) ds  = - -  P (t) ( ~ E ) - ' .  ( 1 . 2 )  
0 

We differentiate the relation (1.2) with respect to the time t. Taking into account 
t h e  r e l a t i o n  b e t w e e n  t h e  r a d i u s  o f  t h e  g r o w i n g  c y l i n d e r  a ( t )  and t h e  r a t e  o f  a c c r e t i o n  V ( t ) ,  
we write the equality obtained in the form 

~'=--u(t) ~ + v(s) ds , ~ ( 0 ) = 0 .  ( 1 . 3 )  
o 
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Here u(t) = P'(t)(~Ea02)-z; v(t) = V(t)(vZa02)-z We find the initial condition for Eq. 
(1.3), settling t = 0 in the relation (1.2). 

The following constraints are imposed on the functions u(t) and v(t): 

T t 

(t) d t  = po, [ u o, 
0 0 

T 

v (t) dt = ~,, 
{} 

O <~ t <~ T ; (1.4) 

(1.5) 

where P0 = P0(vEa02)-z; ~ = (ala~l)2 -- I. 

The problem of optimizing the process of growth of the column consists of determining 
a piecewise-continuous rate of accretion v(t) satisfying the inequality 

u l < ~ Y ( O < P ~ ( Y z  = Vl (glad) -1, v2 = V2 (~[a~) -1) (1.6) 

and giving a minimum value for the longitudinal strain at the moment accretion stops le(T) l. 
Since e(T) depends on the loading history P(t) we shall interpret this problem as a problem 
of determining 

inf.(0 sup (t  I (r)l. (1 .7)  

The supremum in  t h i s  e x p r e s s i o n  i s  c a l c u l a t e d  o v e r  a l l  p i e c e w i s e - c o n t i n u o u s  f u n c t i o n s  u ( t )  
for which the estimate 

1. (01 < u, = u1 (1.8) 

is valid. 

In what follows we shall assume that the exact top and bottom boundaries in the expres- 
sion (1.7) are reached for unique (to within the values on sets of measure zero) functions 
u0(t) and v0(t). In addition we assume that there exist a nontrivial selection of the op- 
timal rate of accretion of the column and a nontrivial loading: 

V 1 T < ~ ( a ~ - - a ~ ) I < V ~ T ,  P o < U z T "  ( 1 . 9 )  

The r e l a t i o n s  ( 1 . 9 )  p r e v e n t  t h e  f u n c t i o n s  u ( t )  and v ( t )  f rom a s s u m i n g  o n l y  t h e  maximum 
possible or only the minimum possible value for almost all t ~[0, T]. It is assumed that 
at any time t ~[0, T] the compressive load P(t) does not exceed the Eulerian critical force 
and the column cannot become unstable. 

2. Determination of the Optimal Loading Regime. We fix the admissible rate of accre- 
tion v(t) and study first the problem of determining the function u0(t), which gives the 
functional ~ = Ie(T) I a minimum value on the set of trajectories of Eq. (1.3) under the 
restrictions (1.4). It is easy to verify that for any admissible function u(t) the quantity 
e(T) is negative. We replace the problem of determining the maximum of the functional # by 

( i )  t h e  p r o b l e m  o f  m a x i m i z i n g  t h e  f u n c t i o n a l  Oz = - ~ ( T )  + ~  u(t) d t - - p  o on t h e  s e t  o f  t r a j e c -  

t o r i e s  o f  Eq. ( i . 3 ) .  He re  ~1 i s  a L a g r a n g e  m u l t i p l i e r ,  t a k i n g  i n t o  a c c o u n t  t h e  f i r s t  c o n d i -  
t i o n  ( 1 . 4 ) .  I f  t h e  f u n c t i o n  u 0 ( t ) ,  g i v i n g  an ex t remum t o  t h e  f u n c t i o n a l  ~1,  g u a r a n t e e s  t h a t  
t h e  s e c o n d  c o n d i t i o n  ( 1 . 4 )  h o l d s ,  t h e n  t h i s  f u n c t i o n  a l s o  g i v e s  an ex t remum t o  t h e  f u n c -  
t i o n a l  ~. We shall calculate the increment to the function ~z: 

A ~ I =  Pl(t)  Au( t )d t  F z ( t ) = r  + | +  v(s) ds . ( 2 . 1 )  
o o 

A c c o r d i n g  t o  t h e  n e c e s s a r y  c o n d i t i o n  f o r  o p t i m a l i t y  [ 2 ] ,  f o r  t h e  f u n c t i o n  u 0 ( t )  t h e  
e x p r e s s i o n  in  t h e  i n t e g r a n d  in  ( 2 . 1 )  mus t  be  n o n p o s i t i v e  f o r  a l m o s t  a l l  t ~ [0 ,  T] and any  
a d m i s s i b l e  i n c r e m e n t s  t o  t h e  f u n c t i o n  u 0 ( t ) .  T h i s  c o n d i t i o n  h o l d s ,  i f  t h e  o p t i m a l  f u n c t i o n  
u 0 ( t )  a s sumes  t h e  v a l u e  - u  I f o r  F z ( t )  < 0 and u z f o r  F z ( t )  ; 0.  I t  f o l l o w s  f r o m  h e r e  and 
(1.9) that the function Fz(t) cannot assume only negative or only nonnegative values on the 
segment [0, T]. Since the function Fz(t) does not increase monotonically, there exists a 
toe (0, T) such that 
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uo(t) = ul, 0 ~ . < t < t 0 ; u 0 ( t )  = - - u l ,  t o ~ t ~ T .  ( 2 . 2 )  

The parameter t o is determined from (1.4) and (2.2) in the form 

t o = ( t / 2 ) ( T +  pouTS) .  ( 2 . 3 )  

Accord ing  to  ( 2 . 2 )  t h e  second  c o n d i t i o n  o f  ( 1 . 4 )  h o l d s .  The f u n c t i o n  u 0 ( t )  g i v e s  a 
maximum of the functional ~ and does not depend on the rate of accretion of material v(t). 

3. Determination of the Optimal Accretion Regime. In accordance with (2.2) the prob- 
lem of optimizing the rate of accretion of the column consists of determining the optimum 
control by Eq. (1.3) with u = u0(t), which gives a minimum value to the functional ~ under 
the restriction (1.5). Introducing the Lagrange multipler ~2, which takes into account the 
isoperimetric condition (1.5), we replace this problem by the problem of minimizing the 

f u n c t i o n a l  O 2 = - - s ( T ) - ~  ~ v( t )  d t - - ~  on t h e  s e t  of  t r a j e c t o r i e s  o f  gq. ( 1 . 3 ) .  We s h a l l  

c a l c u l a t e  t h e  i n c r e m e n t  t o  t h e  f u n c t i o n a l  ~2: 
T 

A O  2 = ~ F 2 (t) Av  (t) dt; ( 3 . 1 )  
0 

Y~ (t) = % - -  ~ uo (~) l + v (s) ds d~. ( 3 . 2 )  
0 

According to the necessary condition of optimality [2], for the function v0(t) the 
expression in the integrand in (3.1) is nonnegative for almost all t ~ [0, T] and for any 
admissible increments to the function v0(t). The condition indicated holds, if the control 
v0(t) assumes the value v I for F2(t) e 0 and the value v 2 for F2(t) < 0. It follows from 
(1.9) that the function F2(t) cannot assume only negative or only nonnegative values on the 
segment [0, T]. In accordance with (2.2) and (3.2) the function F2(t) increases in the 
interval [0, t o ) and decreases in the interval (to, T]. In addition, the inequality F2(0) < 
F2(T) holds. It follows from the enumerated properties of the function F2(T) that only two 
optimal accretion regimes are possible: 

Vo(t) = v 2, 0 ~ t < Q; Vo(t) = v~, tl ~ t ~ T; ( 3 . 3 )  

Vo(t ) = v2, 0 ~ t < t2, ta ~ t ~ T; Vo(t ) = v~, t2 ~ t < ta, ( 3 . 6 )  

where t I < to, t 2 < t o < t 3 are the moments at which the optimal rate of inflow of material 
changes. 

We shall determine the conditions under which the accretion regime (3.3) is realized. 
The parameter t I is determined from (1.5) in the form 

tl = (~ - -  vxT)(v2 - -  vl) -1. ( 3 . 5 )  

The inequality F2(T) ~ 0 is the necessary and sufficient condition for realization of 
the accretion regime (3.3). According to (2.2), (2.3), (3.2), (3.3), and (3.5), we have 

4 [2 (t + ~) + v 1 ( p o u t  ~ - -  T)]-* ~< (t + ~)-1 + (v2 --  v,) [(t + ~) v s --  v~ (1 + v2T)]-I .  ( 3 . 6 )  

I f  t h e  i n e q u a l i t y  ( 3 . 6 )  does  n o t  h o l d ,  t h e n  t h e  o p t i m a l  a c c r e t i o n  reg ime  has  t h e  form ( 3 . 4 ) .  
The parameters t 2 and t 3 are determined from the relations 

ta - -  t ,  = (v.,T - -  E)(v2 - -  v~) -1, 2Ii  + v,t2 I -  v~(to - -  t~)l -~ = 
= (1 -I- v2t2) -1 -}- [i -I- v2t2 -1- Vl(t:l - -  t2)] -1. ( 3 . 7 )  

The first equality in (3.7) expresses the isoperimetric condition (1.5). The second rela- 
tion in (3.7) follows from the equalities F2(t2) = F2(ts) = 0. 

The relations obtained hold for v I > 0. If v I = 0, then they simplify substantially. 
In particular, the estimate (3.6) assumes the form 

P~ ~ ~'v2-1' ( 3 .8  ) 
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while the parameters t 2 and t 3 are determined by the expressions t 2 = (i/2)(p0ul -l + Iv2-i), 
t3 = T + (i/2)(p0u1-1 - Iv2-1). 

We shall formulate the results obtained in the form of a theorem. 

THEOREM. If the inequality (3.6) holds, then the optimal rate of accretion of material 
is a piecewise-constant function with one switching point. The optimal rate of inflow of 
matter assumes the maximum value on the first interval of constancy and the minimum value 
on the second interval. If the inequality (3.6) does not hold, then the optimal rate of 
accretion is a piecewise-constant function with two switching points. The optimal rate of 
inflow of matter assumes the maximum value on the first and last intervals of constancy and 
the minimum value on the second interval. 

4. Possible Generalizations. The theorem also permits determining the optimal rate of 
inflow of matter in a number of other problems of growth of elastic bodies. As an example 
we shall examine the problem of optimizing the twisting of a growing cylinder. Prior to the 
strain the cylinder with a circular transverse cross section with radius a 0 is in a natural 
state. At the time t = 0 a torque M(t), M(0) = 0, is applied to its ends, and continuous 
accretion of matter starts on the unloaded lateral surface. The rate of change of the torque 
is bounded (IM'(t) l ~ UI), and its value is given at the moment accretion stops [M(T) = M0]. 
The problem is to find the admissible rate of inflow of matter v0(t) that ensures a fixed 
value of the radius of the cylinder at the moment accretion stops a I and gives a minimum 
for the angle of twist ~ at the final moment with an arbitrary admissible change of the 
torque, i.e., it gives infv(t) SUpu(t) I~(T)I, where u(t) = 2M'(t)(~Ga04) -I and G is the con- 
stand shear modulus of the material. 

For simplicity we restrict ourselves to the analysis of the process of accretion with- 
out any interference, when the minimum possible rate of inflow of matter equals zero. Re- 
peating the arguments of Secs. 2 and 3 we find that the optimal rate of accretion is deter- 
mined from the theorem, and the inequality characterizing the number of switching points has 
a form analogous to (3.8): 

mou~ ~ ~ ~u~ ~ ( ,n  o = 2 M  o (gGa~)-~). 

I am deeply grateful to N. Kh. Arutyunyan for his interest in this work and for valuable 
remarks. 
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